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SUMMARY 

A fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in 
deforming porous media is developed. It makes use of the modified effective stress concept together with the 
capillary pressure relationship. The heat transfer through conduction and convection as well as the latent heat 
transfer (evaporation andor condensation) is taken into account. 

The governing equations in terms of displacements, temperature, capillary pressure and gas pressure are 
coupled non-linear differential equations and are solved by the finite element method. 

The model is validated with respect to a documented experiment on semisaturated soil behaviour. Two other 
examples involving subsidence due to pumping From a phreatic aquifer and thermoelastic consolidation of 
saturated and semisaturated media are also presented. 

KEY WORDS coupled heat and mass transfer; deforming porous media; phase change; mathematical 
model; numerical solution 

1. INTRODUCTION 

A fully coupled numerical model to simulate slow transient phenomena involving flow of heat, water 
and gas in deforming porous media is presented. This model is aimed at handling situations which 
span from fully saturated to almost dry conditions. 

The mathematical model consists of balance equations of mass, linear momentum and energy and of 
the appropriate constitutive equations. The balance equations are first written at the microscopic level 
for each constituent and then macroscopic balance equations are obtained by systematic application of 
averaging theories based on spatial averaging operators. '-lo 

Particular aspects of the model are the following. The gas phase is considered to be an ideal gas 
composed of dry air and vapour, which are regarded as two miscible species. Furthermore, phase 
change is taken into account as well as heat transfer through conduction and convection and latent heat 
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transfer (evaporation-condensation). This model is an extension of the heat and mass transfer 
formulation of Baggio et a1.,"9'2 based on Whitaker's approa~h,'~'' to the case of deformable porous 
media. It is a step forward when compared with a previous model13 where latent heat transfer and 
phase change were neglected. The differences in behaviour due to these two factors are significant in 
simulations where the conditions are such that these phenomena may develop (e.g. long time spans or/ 
and high temperature gradients). The model makes further use of a modified effective stress concept 
together with the capillary pressure relationship. 

The above-mentioned balance equations, after introduction of the constitutive relationships, are 
discretized in space by means of the finite element method and in time by finite differences. The 
chosen macroscopic primary variables are displacements, capillary pressure, gas pressure and 
temperature. These correspond to real measurable quantities directly linked to laboratory practice, 
which is an important aspect when selecting the appropriate constitutive equations. 

As far as other published solutions including solid matrix deformation are concerned, only a few can 
be found in the literature. Most models address the case of a rigid matrix.'""'6 The case of matrix 
deformation was dealt with in the already-mentioned model,13 by Geraminegad and Saxena" and by 
Lewis et a l l8  In Reference 17 a modified version of the theory of Philip and de V r i e ~ ' ' , ~ ~  was applied 
in the heat transfer equation and the model incorporated only volumetric soil deformation. In 
Reference 18 geothermal reservoirs were considered above the critical temperature, so that capillary 
pressure effects could be neglected and a unique continuity equation for both steam and water could be 
used. 

In this paper the governing equations are briefly derived and the discretized equations shown, which 
are then solved by a Newton-type procedure. Three examples are solved which were used for the 
validation of the code based on the outlined approach. The last example clearly shows the need for a 
complete model which includes also phase change and latent heat. 

2. CONSTITUTIVE EQUATIONS 

The semisaturated porous medium is modelled as multiphase system where the voids of the skeleton 
are filled partly with liquid water and partly with gas assumed to behave as an ideal mixture of dry air 
and water vapour. The state of the medium is described by gas pressure p g ,  capillary pressure pc ,  
temperature Tand the displacement vector of the solid matrix, u. 

The saturation of liquid water, S, is an experimentally determined function of capillary pressure p c  
and temperature i.e. 

S = S ( P c ,  T ) ,  (1) 

(2) 

pga = PgaTRIMa, Pgw = Pgw TRIMW , Pg =Pga f p g w ,  P g  = P g a  + P g w .  (3) 

while its pressure pI can be expressed as 

PI = Pg - Pc. 

The equation of state of perfect gases applied to dry air (ga), vapour (gw) and moist air (8) gives - 

Owing to the curvature of the meniscus separating the liquid (water) phase from the gas phase inside 
the pores of the medium (considered as a capillary porous body), the equilibrium vapour pressure can 
be obtained from the Kelvin relationship. This gives the relative humidity (RH) of the moist air inside 
the pores as 
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where the water vapour saturation pressure pgws, which depends only upon temperature T, can be 
obtained from the Clausius-Clapeyron equation or from empirical correlations such as the one 
proposed by Hyland and Wexler.” 

The constitutive laws of the solid phase are introduced through the concept of modified effective 
stress 

( 5 )  0” = CJ + ClpI, 

where 0 is the total stress tensor, I is the unit tensor, c( is the Biot constant and p is the average pressure 
of the mixture of fluids surrounding the grains, which can be evaluated in the case of immiscible two- 
phase flow, using the averaging technique developed by Whitaker,’?’ o,22 as 

(6) p = s . PI + (1 - S )  ‘Pg. 

The Biot constant is introduced to account for the volumetric deformability of the particles and was 
s h o ~ n ~ ~ - ~ ~  to be 

KT 

Ks - 
c ( =  1 ---< 1, (7) 

where KT and Ks are the bulk moduli of the porous medium and the solid phase respectively. 

Reference 26.  
For a discussion about the validity of the effective stress concept the interested reader is referred to 

The constitutive relationship for the solid skeleton has the form 

dd’ = D(ds - dsT - ds’) (8) 

where D is the tangent matrix, dsT = I(Ps/3)dT is the strain increment caused by thermoelastic 
expansion, Ps is the cubic thermal expansion coefficient of the solid and dso represents the autogenous 
stain increments and the irreversible part of the thermal strains.27 

3. GOVERNING EQUATIONS 

In the following, only slow phenomena and small displacements are considered. Thermal equilibrium 
between solid matrix, gas and liquid is assumed, so the temperature is the same for the three 
constituents. 

The formulation of heat and mass transfer in porous media is obtained starting from the appropriate 
local equations expressing the laws of continuum physics (see e.g. Reference 28), specifically the 
continuity equation for each species considered, the Navier-Stokes equation for quasi-steady creeping 
flow (i.e. with the time-dependent and convective terms neglected) and the energy equation (enthalpy 
balance) with viscous dissipation and reversible work neglected. In general such equations cannot be 
solved because of the complex geometry of the porous media, but using the volume-averaging 
technique,’-399 we can obtain equations averaged on a representative elementary volume (REV)’ of the 
porous medium. 

The multiphase Darcy equation applied to the liquid phase and to the gas phase respectively gives 

KK,l 
PI 

VI = - - ( o p ,  - VPC - (9) 
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where vI and vg are the velocities of liquid and gaseous phase relative to the solid phase respectively 
and the vector b indicates the specific body force term (normally corresponding to the acceleration due 
to gravity). Usually in the gas phase the body force term pgb is negligible. 

Fick’s law gives the relative average velocities of the diffusing species (dry air and water vapour) as 

The governing equations cast in conservation form can be written as follows:9327 
dry air conservation equation 

(13) 
d d 

4 at [ (1 - s ) p g a ]  + a( 1 - at ( v .  U) + V .  (Pgavg)  + V .  ( P g v i w )  = 0, 

water species (liquid-vapour) conservation equation 

energy conservation (enthalpy balance) 

dT 
at PC - + ( C p w p w v l  + C p g p g w v g ) .  VT - V. (AeffVT) 

dS d 
= Ah,,, (4P I  + asp, - dt (V. .) - v .  (w)) ; (15) 

the linear momentum balance equation for the whole mixture, neglecting inertial effects, can be 
written in terms of total stresses as29-31 

V.a  + pb = 0, (16) 

(17) 

where p is the average density of the mixture, 

P = (1  - 4 ) P s  + 4% + 4(1 - SIP,, 

4 is the porosity, ps is the density of the solid, pl is the density of the liquid water and pg is the density 
of the gas. 

It is further necessary to define the initial and boundary conditions. The initial conditions specify the 
full fields of gas pressure, capillary pressure, temperature and displacement: 

(18) 
p g  = p g ,  0 pc =p:,  T =  To and u = u o  a t t = O .  

The boundary conditions can be imposed values on Ti or fluxes on rg, where the boundary 
r = Ti u rp. The imposed values on the boundary for gas pressure, capillary pressure, temperature 
and displacements are 
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The volume-averaged flux boundary conditions for the water species and dry air conservation 
equations and for the energy equation to be imposed at the interface between the porous medium and 
the surrounding fluid are 

(PgaVg + P g v k )  * n = qga on r;, 
(PgwVg + PlVl - P g V i w )  * n = B, (Pgw - Pgw,) + qgw + 41 on l-:, (20) 

- ( p , v l A h v a p  - &RVT) * n = N,(T - T,) + qT on r;, 
where n is the unit vector, perpendicular to the surface of the porous medium, pointing towards the 
surrounding gas, pP, and T, are the mass concentration of water vapour and the temperature in the 
undisturbed gas phase far from the interface respectively, a, and Bc are the convective heat and mass 
transfer coefficients respectively and qga, q p  q1 and q T  are the imposed dry air flux, the imposed 
vapour flux, the imposed liquid flux and the imposed heat flux respectively. 

Equations (20) are the natural boundary conditions for the dry air equation (13), the water species 
conservation equation (14) and the energy conservation equation (1 5) respectively, when the solution 
of these equations is obtained through a weak formulation of the problem, as is usually done with the 
finite element method.32 

The traction boundary conditions for the displacement field are 

(21) 0 - n = t on r!, 
where t is the imposed traction. 

4. DISCRETIZATION AND SOLUTION 

Discretization of the governing equations is camed out by means of finite elements in space and finite 
differences in time. The notations of Zienkiewicz and Taylor32 are used in the following, together with 
vector notation. The unknown variables are expressed in terms of their nodal values as 

p g  = p g ( t )  = Nppg(t), pc  = p c ( t )  = Npp,(t), T = T ( t )  = NtT(t), u = ~ ( t )  = N,,ii(t). 

(22) 

The integral or weak forms of the heat and mass transfer equations obtained following the Galerkin 
procedure and with the usual choice of shape finctions N can be expressed in matrix form as 

Cggpg + Cgcpc + CST + Cguh + Kggpg + Kgcpc + KgT + fg = 0, 

C,Pg + C,,P, + CctT + C,,U + KCgpg + Kccpc + & t T  + f, = 0, (23) 

Ctgpg + Ct& + CttT + ChU + Ktgpg + Ktcpc + KttT + ft = 0, 

where all the matrices are as listed in Appendix I. 

momentum balance equation (1 6) can be written in a weak form ax2’ 
Using the principle of virtual work and taking into account the boundary condition (21), the linear 

dR + In p GuTb dn + / GuTt dT = 0. 
- s, r 

(24) 

Application of (2), (6), the effective stress relationship (5) and the definition of the strain matrix 
relating strain and displacement, i.e. 
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E = Bu, (25) 

allows us to express (24) in matrix form as 

BTo dn + KU& + K,Cpc + KUtT + f, = 0, (26) 
- J, 

where f, and the coupling matrices Kg, Kc and Kt  are as listed in Appendix I. 
The effective stresses are obtained from integration of (8), starting from the known initial values of 

the problem. 
Semidiscretization of the conservation equations (and of the other ones required to complete the 

model) with the standard Galerkin method (weighted residuals)32 and the principle of virtual workz7 
results in a non-symmetric, non-linear and coupled system of ordinary differential equations of the 
form 

C(x)X + K(x)x + f(x) = 0, (27) 
where 

and the non-linear (matrix) coefficients C(x), K(x) and f(x) are obtained by assembling the submatrices 
indicated in (23) and (26). Time discretization is accomplished through a fully implicit finite difference 
scheme (backward differen~e):~' 

C(X,+ 1 )  xn+ At - + K ( X n + I ) X n + l  + f (xn+l)  = 0, (29) 

where n is the time step number and At is the time step. 

Newton-Raphson-type procedure 
Considering the non-linearity of the system of equations (17), the solution is obtained with a 

where I is the iteration index and at the end of each iteration the primary variables are updated as 
xI+I - I I 

n + l  (31) 
A problem arises when the medium is hlly saturated, because in this case the gas pressure p g  and the 

capillary pressure pc have no physical meaning, while on the other hand the state of the liquid water in 
the medium is described by two variables (since in such a situation there are only two degrees of 
freedom on top of solid displacements: liquid pressure pl and temperature r). The problem is treated 
with a formal modification of the relationship between saturation S and capillary pressure pc: when the 
saturation S becomes equal to one, the sign of the capillary pressure is set negative and the value equal 
to the pressure in the liquid above gas pressure. 

The hlly saturated state is detected by monitoring the sign of the capillary pressure pc: when 



COUPLED HEAT, WATER AND GAS FLOW 975 

such a condition is reached, the dty air conservation equation is dropped and the gas pressure pg is set 
equal to atmospheric pressure (‘switching’ from partially saturated to fully saturated state equations or 
vice versa). In practice, capillary and gas pressure oscillations usually arise when this switch is 
performed, so it is necessary to apply this procedure for slightly lower saturation value S < 1 (capillary 
pressure p, > 0)  which depends on the shape of the saturation-capillary pressure relationship and on 
the problem analysed. These oscillations are possibly due to the sudden switch of element behaviour 
(there is a change in governing equations) in a part of the domain, which in turn causes different 
convergences to solution in fully and partially saturated zones of the domain and produces oscillations 
in the Newton iteration procedure.33 Another possible reason is the occurrence of an incompressible- 
undrained limit which may cause spurious pressure  oscillation^.^^ 

Based on the presented discretization, the HMTRA-DEF research computer code has been 
developed for solution of the non-linear and non-symmetrical system of equations governing heat and 
mass transfer in a deforming porous medium. 

5. NUMERICAL EXAMPLES 

It is very difficult to choose appropriate tests to validate the proposed model because of the lack of any 
analytical solutions for this type of coupled problem, where deformations of the solid skeleton are 
studied together with the saturated-unsaturated flow of mass and heat transfer. There are also very few 
documented laboratory experiments. One of these is the experiment conducted by Liakopoulo~~~ on 
the isothermal drainage of water from a vertical column of sand. This test was also used by Narasimhan 
and Withersp~on,~~ Schrefler and S i m ~ n i , ~ ~  Zienkiewicz et aL2’ and Schrefler and Zhan26 to check 
their numerical models. Then two other examples relating respectively to subsidence due to pumping 
from a phreatic a q ~ i f e r ~ ~ . ~ ~  and thermoelastic con~olidat ion’~,~~ for fully and partially saturated 
conditions are solved. 

In all these examples isoparametric Lagrangian elements are used, the same for the pressure, 
temperature and displacement fields. Furthermore, linear elastic material behaviour and the Biot 
constant c1 = 1 are assumed. 

5. I .  Drainage test 

In the experiment of Liakopoulo~~~ a column of Perspex 1 m high was packed with Del Monte sand 
and instrumented to measure continuously the moisture tension at several points along the column. 
Before the start of the experiment ( t  < 0)  water was added continuously from the top and was allowed 
to drain freely at the bottom through a filter until uniform flow conditions were established. At t = 0 
the water supply was ceased and the tensiometer readings were recorded. The porosity, 4 = 29.75%, 
and hydraulic properties of Del Monte sand were measured by Liakopoulos in an independent set of 

For numerical purposes the column was simulated by 10 and 20 four-, eight- and 
nine-node isoparametric finite elements of equal size and different meshes in the time domain were 
used, giving practically the same results. At the beginning, besides the uniform flow conditions (i.e. 
unit vertical gradient of the potential andp, = 0 on the top surface), a mechanical equilibrium state was 
assumed. The boundary conditions were the following: for the lateral surface, qT = 0, uh = 0, where uh 

is the horizontal displacement of soil; for the top surface, pg =patm, where pat,,, is atmospheric 
pressure, T = 293.15 K; for the bottom surface, pg = pat,,,, p, = 0 for t > 150 s, while the water 
pressure PI was assumed to change linearly from the initial value to zero for t < 150 s, T = 293- 15 K, 
uh = u, = 0, where u, is the vertical displacement of soil. 

Liakopoulos did not measure the mechanical parameters of the soil, so the Young modulus of the soil 
was assumed as E = 1.3 MPa and the Poisson ratio as v = 0.4, similarly as in References 26 and 36. 

The calculations were performed for static air conditions (gas pressure assumed equal to 
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atmospheric pressure in partially saturated zone) as well as for two-phase flow. For the latter case, 
switching between saturated and unsaturated solutions was possible (no oscillation appeared) when 
pc = 6000 Pa (S z 0-97), so two-phase flow was present in a very limited zone and had only a small 
influence on the solution of the problem analysed. For this reason only the solution for static gas 
conditions is presented. 

The resulting profiles of water pressure are compared with the experimental results of Liakopoulo~~~ 
(broken curves) in Figure 1 ,  showing their good agreement. The profiles of vertical displacements and 
water saturation are compared in Figure 2 with the results of Schrefler and Zhan26 (broken curves). The 
transient of vertical displacements shows significant differences, although the final values of vertical 
displacements of the top surface are similar. The reason for the differences is the fact that we do not 
have the same initial conditions for displacements (Uh(0) = u,(O) = 0 in the model of Schrefler and 
Zhan,26 while a state of mechanical equilibrium has been imposed in the actual model). Furthermore, 
Schrefler and Zhan26 used in their model the linear momentum balance equation expressed in terms of 
time derivatives of the primary variables. By time differentiating the equation, the set of possible 
solution trajectories is modified if not all initial conditions are the same in the two models, including 
the derivatives up to the highest order present in the ODE. 

5.2. Modelling of subsidence due to pumping from a phreatic aquifer 

This example deals with subsidence of saturated-unsaturated land due to pumping from an 
axisymmetric aquifer, which was solved previously by Safai and P i ~ ~ d e ? ~  and then by MeroL3* An 
aquifer of 10 m depth sited on an impervious layer was subjected to pumpage of 20 m3 h-' within a 
height of 2.5 m from the bottom. At the beginning a filly saturated state with unit vertical gradient of 
potential was assumed, as well as a mechanical equilibrium state. 

The boundary conditions were the following: for the bottom surface, u, = 0; for the top surface, 
p g  =patm; for the inner lateral surface (radius 0.3 m), an outflow of 1.179 kg s-' m-2 within the 
height of 2.5 m from the bottom, uh = 0; for the outer lateral surface (radius 100.3 m), full saturation 
of water with unit vertical gradient of potential was assumed. The temperature of the medium was 
assumed to be equal to 293.15 K at the beginning as well as during the whole process analysed. 

The mechanical and hydraulic properties of the soil were assumed similarly as in References 37 and 
38: E = 22 MPa, v = 0.1, k = 2 x m s-', 4 = 0-2. The relationships between capillary 
pressure, saturation and relative permeability of water proposed by Safai and Pinder37 were used. 
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Figure 1 .  Comparison of numerical (fi111 curves) and experimental results34 (broken curves) for water pressure 
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Figure 2 Resulting saturation and vertical dlsplacement profiles (full curves) compared with solution of Schrefler and Zhanz6 
(broken curves) 

The relative permeability of gas proposed by Brooks and  core^^^ were applied in the partially 
saturated zone. 

For numerical purposes the aquifer was simulated by 50 eight-node isoparametric elements (five in 
height and 10 in radius direction) using the same mesh as in Reference 38. 

A 3 x 3 Gaussian integration scheme was applied. Temporal discretization was performed with an 
initial step of 1 min for the first 10 h, 10 min for the next 20 h and then 1 h until 28 days, the required 
time of analysis. 

The resulting profiles of water saturation on the top surface of the aquifer are compared in Figure 3 
with the results of Safai and Pinder3’ (broken curves), showing their relatively good agreement. It has 
to be mentioned that the model of Safai and Pinder neglects the fluid accumulation due to changes in 
the degree of saturation, which explains the differences in the early pumping phase. The profiles of 
water saturation on the upper surface and vertical displacements for time values of 10 min, 3, 10 and 
30 h and 28 days are compared in Figure 4 with the results of M e r ~ i ~ ~  (broken curves). In Reference 
38 the gas pressure was assumed constant and equal to atmospheric pressure in the partially saturated 
zone, which may explain the different time transient behaviours. Note that the final values at the centre 
match very well. 
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Figure 3. Resulting profiles of saturation (fidl curves) compared with solution of Safai and Pinder37 (broken curves) 

5 .3 .  Non-isothermal consolidation 

This example deals with fully and partially saturated thermoelastic consolidation, for which previous 
solutions are In Reference 27 the fully saturated case was studied in detail, while in 
Reference 13 the problem was solved for the partially saturated case but neglecting latent heat and 
phase change. The present model takes these two factors into account and the ensuing changes in terms 
of displacements and especially saturations and capillary pressures in advanced stages of the 
simulation are of importance. 

A column of 7 m height and 2 m width of linear elastic material with Young modulus E = 6 MPa 
and Poisson ratio v = 0.4 was subjected to an external surface load of 1000 Pa and to a surface 
temperature jump of 50 K above the initial temperature of 293.15 K. The other data of the porous 
medium were assumed the same as in References 13 and 27. The relationships between capillary 
pressure, saturation of water and relative permeabilities of water and gas proposed by Brooks and 
C ~ r e y ~ ~  were used. Water and solid phase were assumed incompressible. 

The boundary conditions were the following: for the lateral surface, q T  = 0, uh = 0; for the top 
surface, T = 343.1 5 K, pg = pam, pc  = 0 for the fully saturated case or pc  = p z  for the partially 
saturated case, where pF is the capillary pressure corresponding to saturation S = 0.92; for the bottom 
surface, qT = 0, u, = 0. For numerical purposes the column was simulated by nine (the same as in 
Reference 27) and then by 18 eight-node isoparametric elements, giving practically the same results. 
3 x 3 Gaussian integration scheme was used. For the hlly saturated case an initial time step of 0.01 
days for 10 steps was applied. This value was then multiplied by 10 and this procedure was repeated 
after each 10 time steps until the required time of analysis was reached. For semisaturated conditions 
the temporal discretization was performed with an initial step of 0.01 days during the first 100 steps 
and multiplied by 10 after repeating 100 steps until lo7 days. 

The problem was solved for three different cases: (i) fully (ii) initially homogeneous 
saturation of water; S =9770.92,13 and capillary pressure-saturation curve:39 independent of 
temperature; (iii) initially homogeneous saturation of water, S = 0.92, and modified capillary 
pressure-saturation relationship of Brooks and C ~ r r e y ~ ~  (assuming that it was measured at temperature 
T = 293.15 K) with regard to the change in capillary pressure due to the dependence of surface tension 
on tem~erature.~' 



COUPLED HEAT, WATER AND GAS FLOW 

0 10 20 30 40 

979 

0 

- E -0.001 

C aJ 

0 
0 

- 
c 

E -0.002 

- 
Q 
5 -0.003 

E 

- 
0 
0 

8 - 0 . m  

-0.005 

Distance (m) 

1 

0 9  

0 8  

0 7  - 06 
05 

0 4  

0 3  

0 2  

- 
s 
L 

v) 

t 
0 10 20 30 40 50 60 

Distance (m) 
Figure 4. Resulting saturation and vertical displacement profiles (full curves) compared with solution of Meroi3* (broken curves) 

The resulting temperature profiles, practically the same for the three analysed cases (because of the 
assumption of the same average thermal conductivity and relatively high thermal capacity, the same as 
in References 13 and 27), are compared in Figure 5 with the results of Aboustit et dZ7 In all the 
figures concerning the analysed example the numbers 4, 7, 17, 27, 37 and 42 indicate some selected 
nodal points of the mesh used in Reference 27 which are located at 0.1, 0-2, 0-6, 1-0, 3.0 and 5.0 m 
from the upper surface of the column respectively. The resulting pore pressure and vertical 
displacement histories at several nodal points are compared in Figures 6 and 7 with the previous 
 solution^'^'^^ for the idly saturated case. In Figure 7 the settlement histories of the semisaturated 
medium with temperature-independent capillary pressure-saturation curve are also presented. The 
resulting profiles of capillary pressure and saturation of water for this case (Figure 8) show the 
influence of phase change on the phenomenon. The characteristic shape of the curves is an effect of 
previous condensation and subsequent evaporation caused by temperature changes. In the previous 
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Figure 5 .  Resulting profiles of temperature (full curves) compared with solution of Aboustit el d2’ (broken curves) 

~olution’~ where phase change was not taken into account this was not observed. The settlement 
histories of two analysed semisaturated cases are compared in Figure 9, showing the significant 
differences caused by the dependence of capillary pressure-saturation curve on temperature,which was 
omitted in Reference 13. The resulting profiles of capillary pressure and saturation of water for the 
third analysed case (Figure 10) show that phase change phenomena are more intensive in this case, 
while capillary pressure histories are strongly influenced by temperature histories, causing additional 
vertical displacements (Figure 9). 

6. CONCLUSIONS 

A hlly coupled model for simulating heat and mass transfer in deformable porous media taking into 
account also phase change phenomena (evaporation, condensation and latent heat transfer) has been 
presented. The model is based on a strong physical background that allows us to clearly identify the 
constitutive equations and the other coefficients needed to characterize the analysed medium. The 
model, obtained by use of volume-averaging  technique^,'^^^*'^ results in a set of non-linear and 
coupled partial differential equations. These are discretized in space using the finite element method 
and in time using finite differences and solved for the gas pressure, capillary pressure, temperature and 
displacements as primary variables. Because of the non-linearity of the equations, a monolithic 
Newton-Raphson approach is used for solution. The validity of the approach has been demonstrated 
by the good agreement between simulation results and experimental data of Liakopo~los .~~ Further 
examples show both the robustness of the model in dealing with problems usually difficult to solve and 
the appreciable influence of phase change (usually neglected in other models) on the evolution of the 
phenomena. 
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APPENDIX I 

The governing equations (23) and (27) in the discretized form are shown here in detail using the 
notation of Reference 27: 



Cc, = N r  [ (1 - S)pg, + SP,] mTcrB 



COUPLED HEAT, WATER AND GAS FLOW 985 

K,, = J, B T D ~ B  m, 

K,, = BTamNp a, 

K, = - BTolSmNp dR, 

APPENDIX 11: NOMENCLATURE 

specific body force (m s - ~ )  
strain matrix relating strain and displacement 
effective specific heat of porous medium (J kg-I K-I) 
specific heat of gas mixture (J kg-l K-I) 
specific heat of liquid phase (water) (J k 

tangent matrix (Pa) 
effective diffusivity of gas mixture (m2 s-’) 
Young modulus (Pa) 
unit tensor 
hydraulic conductivity (m s-’) 
absolute permeability (m’) 
relative permeability of gas phase 
relative permeability of liquid phase 
bulk modulus of solid phase 
bulk modulus of porous medium 
molar mass of gas moisture (moist air) (kg kmol-I) 
molar mass of dry air (kg kmol-I) 
molar mass of water vapour (kg kmol-I) 
unit normal vector 
average pressure of mixture (Pa) 
atmospheric pressure (Pa) 
capillary pressure (Pa) 
pressure of gas phase (Pa) 
water vapour partial pressure (Pa) 
water vapour saturation pressure (Pa) 

K-I) 
specific heat of solid matrix (J kg-l K- k ) 
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liquid water pressure (Pa) 
dry air flux imposed on boundary 
vapour flux imposed on boundary 
liquid flux imposed on boundary 
heat flux imposed on boundary 
gas constant (8314.41 J kmol-’ K-I) 
liquid phase volumic saturation (liquid volume/pore volume) 
time (s) 
traction imposed on boundary (Pa) 
temperature (K) 
temperature in undisturbed gas phase far from interface (K) 
displacement vector of solid matrix (m) 
horizontal displacement (m) 
vertical displacement (m) 
velocity of gaseous phase (m s-I) 
velocity of liquid phase (m s-’) 
relative average diffusion velocity of dry air species (m s-’) 
relative average diffusion velocity of water vapour species (m s-’) 

Greek letters 

Biot constant 
convective heat transfer coefficient (W m-2 K-I) 
convective mass transfer coefficient (kg m-3) 
cubic thermal expansion coefficient of solid (K- I )  

part of boundary 
part of boundary 
enthalpy of vaporization per unit mass (J kg-I) 
time step (s) 
elastic strain 
volumetric strain 
thermoelastic strain 
effective thermal conductivity (W m-’ K-’) 
gas phase dynamic viscosity (Pa s) 
liquid phase dynamic viscosity (Pa s) 
Poisson ratio 
effective density of porous medium (kg mP3) 
gas phase density (kg mP3) 
mass concentration of dry air in gas phase (kg m-3) 
mass concentration of water vapour in gas phase (kg m-3) 
mass concentration of water vapour in undisturbed gas phase far from interface (kg m-3) 
liquid phase density (kg m-3) 
total stress tensor (Pa) 
effective stress tensor (Pa) 
porosity @ore volume/total volume) 

where value of i-variable is imposed 
where flux of i-variable is imposed 

REFERENCES 

1 .  M. Hassanizadeh and W. G. Gray, ‘General conservation equations for multiphase systems: 1. Averaging technique’, Adv. 

2. M. Hassanizadeh and W. G. Gray, ‘General conservation equations for multiphase systems: 2. Mass, momenta, energy and 

3. M. Hassanizadeh and W. G. Gray, ‘General conservtion equations for multiphase systems: 3. Constitutive theory for porous 

4. J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1988. 
5 .  J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979. 
6. J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer, Dordrecht, 1990. 
7. Y. Bachmat and J. Bear, ‘Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach’, 1 

Wter  Res., 2 ,  131-144 (1979). 

entropy equations’, Adv Water Res., 2 ,  191-203 (1979). 

media flow’, Adv. Water Rex, 3, 2 5 4 0  (1980). 

Transp. Porous Media, 1, 213-240 (1986). 



COUPLED HEAT, WATER AND GAS FLOW 987 

8. Y. Bachmat and J Bear, ‘Macroscopic modelling of transport phenomena in porous media. 2: Applications to mass 
momentum and energy transfer’, 1 Transp. Porous Media, 1, 241-269 (1986). 

9. S .  Whitaker, ‘Simultaneous heat, mass and momentum transfer in porous media: a theory of drying’, in Advances in Heat 
Transfer, Vol. 13, Academic, New York, 1977. 

10. S. Whitaker, ‘Heat and mass transfer in granular porous media’, in Advances in Drying, Vol. 1 ,  Hemisphere, New York, 
1980. 

1 1. P. Baggio, C. E. Majorana and B. A. Schrefler, ‘Hydrothennomechanical analysis of concrete by a finite element method’, in 
R. W. Lewis (ed.), Proc. 8th In?. Conf: on Numerical Methods for Thermal Problems, Pineridge, Swansea, 1993, pp. 847- 
859. 

12. P. Baggio, C. Bonacina and M. Strada, ‘Trasporto di calore e di massa nel calcesbuzzo celulare’, La Termotecnica, 45, (12), 
5 3 4 0  (1993). 

13. B. A. Schrefler, X. Zhan and L. Simoni, ‘A coupled model for water flow, airflow and heat flow in deformable porous media’, 

14. V. Dakshanamurthy and D. G. Frelund, ‘A mathematical model for predicting moisture flow in an unsaturated soil under 

15. H. Thomas, ‘Modelling two-dimensional heat and moisture transfer in unsaturated soils, including gravity effects’, Int. 1 

16. H. R. Thomas and S. D. King, ‘Coupled temperaturekapillary potential variation in unsaturated soils’, 1 Eng. Mech., 117, 

Int. 1 Numer. Methods Heat Fluid Flow, in press. 

hydraulic and temperature gradients’, Water Resources Res., 17, 714-722 (1981). 

Numer. Anal. Methods Geomech., 9, 573-588 (1985). 

2475-2490 (1991). 
17. M. Geraminegad and S. K. Saxena, ‘A coupled thermoelastic model for saturated-unsaturated porous media’, Geotechnique, 

36, 539-550 (1986). 
18. R. W. Lewis, I? J. Roberts and B. A. Schrefler, ‘Finite element modelling of two phase heat and fluid flow in deforming 

19. J. R. Philip and D. A. De Vries, ‘Moisture movements in porous material under temperature gradients’, Trans. Am. Geophys. 

20. D. A. De Vries, ‘Simultaneous transfer of heat and moisture in porous media’, Trans. Am. Geophys. Union, 39, 909-916 

21. Hyland and Wexler, ASHRAE Handbook, Fundamentals Yolume, ASHRAE, Atlanta, GA, 1993. 
22. S. Whitaker, ‘The transport equations for multiphase systems’, Chem. Eng. Sci., 28, 139-147 (1973). 
23. M. A. Biot and P. G. Willis, ‘The elastic coefficients of the theory of consolidation’, 1 Appl. Mech., 24, 594401 (1957). 
24. A. W. Skempton, ‘Effective stress in soils, concrete and rocks’, in Pore Pressure and Suction in Soil, Gutterworth, Stoneham, 

MA, 1961, pp. 4-16. 
25. 0. C. Zienkiewicz, Y. M. Xie, B. A. Schrefler, A. Ledesma and N. Bicanic, ‘Static and dynamic behaviour of soils: a rational 

approach to quantitative solutions, 11, Semisaturated problems’, Proc. R. SOC. Lond. A, 429, 31 1-321 (1990). 
26. B. A. Schrefler and X. Zhan, ‘A fully coupled model for water flow and airflow in deformable porous media’, Water 

Resources Res., 29, 155-167 (1993). 
27. R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, Wiley, 

New York, 1987. 
28. P. Baggio and C. Bonacina, ‘Introduction to modeling heat and mass transfer in porous building material’, Q. Is?. Fis. Tec. 

Univ. Padova, 146, in press (in Italian). 
29. B. A. Schrefler, L. Simoni, X. Li and 0. C. Zienkiewicz, ‘Mechanics of partially saturated porous media’, in C. S. Desai and 

G. Gioda (eds), CISM Courses and Lectures, Vol. 3 1 I ,  Numerical Methods and Constitutive Modelling in Geomechanics, 
Springer, New York, 1990, pp. 169-209. 

porous media’, 1 Transp. Porous Media, 4, 319-334 (1989). 

Union, 38, 222-232 (1957). 

(1958). 

30. 0. Coussy, Mecanique des Milieux Poreux, Editions Technip, Pans, 1991. 
3 1 .  R. de Boer, W. Ehlers, S. Kowalski and J. Plischka, Porous Media, a Survey of Drferent Approaches, Fachbereich Bauwesen 

32. 0. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vols 1 and 2, 4th edn, McGraw Hill, London, 1989 and 

33. P. A. Forsyth and R. B. Simpson, ‘A two-phase, two-component model for natural convection in a porous medium’, Int. 1 

34. A. C. Liakopoulos, ‘Transient flow through unsaturated porous media’, Ph.D. Thesis, University of California, Berkeley, CA, 

35. T. N. Narasimhan and P. A. Witherspoon, ‘Numerical model for saturated-unsaturated flow in deformable porous media. 3. 

36. B. A. Schrefler and L. Simoni, ‘A unified approach to the analysis of saturated-unsaturated elastoplastic porous media’, in G. 

37. N. M. Safai and G. F. Pinder, ‘Vertical and horizontal land deformation in a desaturating porous medium’, Adv. Water 

38. E. Meroi, ‘Comportamento non lineare per geometria di mezzi porosi parzialmente saturi’, Tesi di Dottorato in Meccanica 

39. R. N. Brooks and A. T. Corey, ‘Properties of porous media affecting fluid flow’, 1 Irrig. Drain. Div. Am. SOC. Civil Eng., 92 

40. 0. Krischer and K. Kroell, Trocknungstechnik, Band I ,  Die Wssenschaftlichen Grundlagen der Trocknungstechnik, 3. Aufl., 

der Universit5t Gesamthochschule, Essen, 1991, Heft 54. 

1991. 

Numer. Methods Fluids, 12, 655482 (1991). 

1965. 

Applications’, Water Resource Res., 14, 1017-1034 (1978). 

Svoboda (ed.), Numerical Methods in Geomechanics, Balkema, Rotterdam, 1988, pp. 205-212. 

Resources, 2, 19-25 (1 979). 

delle Strutture, Facolta di Ingegneria, Universiti di Padova, 1993. 

(IW), 61-68 (1966). 

Springer, Berlin, 1978. 




